/*
    pybind11/std_bind.h: Binding generators for STL data types

    Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "detail/common.h"
#include "operators.h"

#include <algorithm>
#include <sstream>

NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)

/* SFINAE helper class used by 'is_comparable */
template <typename T>  struct container_traits {
    template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*);
    template <typename T2> static std::false_type test_comparable(...);
    template <typename T2> static std::true_type test_value(typename T2::value_type *);
    template <typename T2> static std::false_type test_value(...);
    template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
    template <typename T2> static std::false_type test_pair(...);

    static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
    static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
    static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
    static constexpr const bool is_element = !is_pair && !is_vector;
};

/* Default: is_comparable -> std::false_type */
template <typename T, typename SFINAE = void>
struct is_comparable : std::false_type { };

/* For non-map data structures, check whether operator== can be instantiated */
template <typename T>
struct is_comparable<
    T, enable_if_t<container_traits<T>::is_element &&
                   container_traits<T>::is_comparable>>
    : std::true_type { };

/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> {
    static constexpr const bool value =
        is_comparable<typename T::value_type>::value;
};

/* For pairs, recursively check the two data types */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
    static constexpr const bool value =
        is_comparable<typename T::first_type>::value &&
        is_comparable<typename T::second_type>::value;
};

/* Fallback functions */
template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { }

template<typename Vector, typename Class_>
void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
    cl.def(init<const Vector &>(), "Copy constructor");
}

template<typename Vector, typename Class_>
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
    using T = typename Vector::value_type;

    cl.def(self == self);
    cl.def(self != self);

    cl.def("count",
        [](const Vector &v, const T &x) {
            return std::count(v.begin(), v.end(), x);
        },
        arg("x"),
        "Return the number of times ``x`` appears in the list"
    );

    cl.def("remove", [](Vector &v, const T &x) {
            auto p = std::find(v.begin(), v.end(), x);
            if (p != v.end())
                v.erase(p);
            else
                throw value_error();
        },
        arg("x"),
        "Remove the first item from the list whose value is x. "
        "It is an error if there is no such item."
    );

    cl.def("__contains__",
        [](const Vector &v, const T &x) {
            return std::find(v.begin(), v.end(), x) != v.end();
        },
        arg("x"),
        "Return true the container contains ``x``"
    );
}

// Vector modifiers -- requires a copyable vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
// silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_>
void vector_modifiers(enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
    using T = typename Vector::value_type;
    using SizeType = typename Vector::size_type;
    using DiffType = typename Vector::difference_type;

    cl.def("append",
           [](Vector &v, const T &value) { v.push_back(value); },
           arg("x"),
           "Add an item to the end of the list");

    cl.def(init([](iterable it) {
        auto v = std::unique_ptr<Vector>(new Vector());
        v->reserve(len(it));
        for (handle h : it)
           v->push_back(h.cast<T>());
        return v.release();
    }));

    cl.def("extend",
       [](Vector &v, const Vector &src) {
           v.insert(v.end(), src.begin(), src.end());
       },
       arg("L"),
       "Extend the list by appending all the items in the given list"
    );

    cl.def("insert",
        [](Vector &v, SizeType i, const T &x) {
            if (i > v.size())
                throw index_error();
            v.insert(v.begin() + (DiffType) i, x);
        },
        arg("i") , arg("x"),
        "Insert an item at a given position."
    );

    cl.def("pop",
        [](Vector &v) {
            if (v.empty())
                throw index_error();
            T t = v.back();
            v.pop_back();
            return t;
        },
        "Remove and return the last item"
    );

    cl.def("pop",
        [](Vector &v, SizeType i) {
            if (i >= v.size())
                throw index_error();
            T t = v[i];
            v.erase(v.begin() + (DiffType) i);
            return t;
        },
        arg("i"),
        "Remove and return the item at index ``i``"
    );

    cl.def("__setitem__",
        [](Vector &v, SizeType i, const T &t) {
            if (i >= v.size())
                throw index_error();
            v[i] = t;
        }
    );

    /// Slicing protocol
    cl.def("__getitem__",
        [](const Vector &v, slice slice) -> Vector * {
            size_t start, stop, step, slicelength;

            if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
                throw error_already_set();

            Vector *seq = new Vector();
            seq->reserve((size_t) slicelength);

            for (size_t i=0; i<slicelength; ++i) {
                seq->push_back(v[start]);
                start += step;
            }
            return seq;
        },
        arg("s"),
        "Retrieve list elements using a slice object"
    );

    cl.def("__setitem__",
        [](Vector &v, slice slice,  const Vector &value) {
            size_t start, stop, step, slicelength;
            if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
                throw error_already_set();

            if (slicelength != value.size())
                throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");

            for (size_t i=0; i<slicelength; ++i) {
                v[start] = value[i];
                start += step;
            }
        },
        "Assign list elements using a slice object"
    );

    cl.def("__delitem__",
        [](Vector &v, SizeType i) {
            if (i >= v.size())
                throw index_error();
            v.erase(v.begin() + DiffType(i));
        },
        "Delete the list elements at index ``i``"
    );

    cl.def("__delitem__",
        [](Vector &v, slice slice) {
            size_t start, stop, step, slicelength;

            if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
                throw error_already_set();

            if (step == 1 && false) {
                v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
            } else {
                for (size_t i = 0; i < slicelength; ++i) {
                    v.erase(v.begin() + DiffType(start));
                    start += step - 1;
                }
            }
        },
        "Delete list elements using a slice object"
    );

}

// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector> using vector_needs_copy = negation<
    std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>;

// The usual case: access and iterate by reference
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
    using T = typename Vector::value_type;
    using SizeType = typename Vector::size_type;
    using ItType   = typename Vector::iterator;

    cl.def("__getitem__",
        [](Vector &v, SizeType i) -> T & {
            if (i >= v.size())
                throw index_error();
            return v[i];
        },
        return_value_policy::reference_internal // ref + keepalive
    );

    cl.def("__iter__",
           [](Vector &v) {
               return make_iterator<
                   return_value_policy::reference_internal, ItType, ItType, T&>(
                   v.begin(), v.end());
           },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );
}

// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
    using T = typename Vector::value_type;
    using SizeType = typename Vector::size_type;
    using ItType   = typename Vector::iterator;
    cl.def("__getitem__",
        [](const Vector &v, SizeType i) -> T {
            if (i >= v.size())
                throw index_error();
            return v[i];
        }
    );

    cl.def("__iter__",
           [](Vector &v) {
               return make_iterator<
                   return_value_policy::copy, ItType, ItType, T>(
                   v.begin(), v.end());
           },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );
}

template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
    -> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) {
    using size_type = typename Vector::size_type;

    cl.def("__repr__",
           [name](Vector &v) {
            std::ostringstream s;
            s << name << '[';
            for (size_type i=0; i < v.size(); ++i) {
                s << v[i];
                if (i != v.size() - 1)
                    s << ", ";
            }
            s << ']';
            return s.str();
        },
        "Return the canonical string representation of this list."
    );
}

// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void>
struct vector_has_data_and_format : std::false_type {};
template <typename Vector>
struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {};

// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args>
enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value>
vector_buffer(Class_& cl) {
    using T = typename Vector::value_type;

    static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");

    // numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
    format_descriptor<T>::format();

    cl.def_buffer([](Vector& v) -> buffer_info {
        return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)});
    });

    cl.def(init([](buffer buf) {
        auto info = buf.request();
        if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T)))
            throw type_error("Only valid 1D buffers can be copied to a vector");
        if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize)
            throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")");

        auto vec = std::unique_ptr<Vector>(new Vector());
        vec->reserve((size_t) info.shape[0]);
        T *p = static_cast<T*>(info.ptr);
        ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
        T *end = p + info.shape[0] * step;
        for (; p != end; p += step)
            vec->push_back(*p);
        return vec.release();
    }));

    return;
}

template <typename Vector, typename Class_, typename... Args>
enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_&) {}

NAMESPACE_END(detail)

//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
class_<Vector, holder_type> bind_vector(handle scope, std::string const &name, Args&&... args) {
    using Class_ = class_<Vector, holder_type>;

    // If the value_type is unregistered (e.g. a converting type) or is itself registered
    // module-local then make the vector binding module-local as well:
    using vtype = typename Vector::value_type;
    auto vtype_info = detail::get_type_info(typeid(vtype));
    bool local = !vtype_info || vtype_info->module_local;

    Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);

    // Declare the buffer interface if a buffer_protocol() is passed in
    detail::vector_buffer<Vector, Class_, Args...>(cl);

    cl.def(init<>());

    // Register copy constructor (if possible)
    detail::vector_if_copy_constructible<Vector, Class_>(cl);

    // Register comparison-related operators and functions (if possible)
    detail::vector_if_equal_operator<Vector, Class_>(cl);

    // Register stream insertion operator (if possible)
    detail::vector_if_insertion_operator<Vector, Class_>(cl, name);

    // Modifiers require copyable vector value type
    detail::vector_modifiers<Vector, Class_>(cl);

    // Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
    detail::vector_accessor<Vector, Class_>(cl);

    cl.def("__bool__",
        [](const Vector &v) -> bool {
            return !v.empty();
        },
        "Check whether the list is nonempty"
    );

    cl.def("__len__", &Vector::size);




#if 0
    // C++ style functions deprecated, leaving it here as an example
    cl.def(init<size_type>());

    cl.def("resize",
         (void (Vector::*) (size_type count)) & Vector::resize,
         "changes the number of elements stored");

    cl.def("erase",
        [](Vector &v, SizeType i) {
        if (i >= v.size())
            throw index_error();
        v.erase(v.begin() + i);
    }, "erases element at index ``i``");

    cl.def("empty",         &Vector::empty,         "checks whether the container is empty");
    cl.def("size",          &Vector::size,          "returns the number of elements");
    cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
    cl.def("pop_back",                               &Vector::pop_back, "removes the last element");

    cl.def("max_size",      &Vector::max_size,      "returns the maximum possible number of elements");
    cl.def("reserve",       &Vector::reserve,       "reserves storage");
    cl.def("capacity",      &Vector::capacity,      "returns the number of elements that can be held in currently allocated storage");
    cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");

    cl.def("clear", &Vector::clear, "clears the contents");
    cl.def("swap",   &Vector::swap, "swaps the contents");

    cl.def("front", [](Vector &v) {
        if (v.size()) return v.front();
        else throw index_error();
    }, "access the first element");

    cl.def("back", [](Vector &v) {
        if (v.size()) return v.back();
        else throw index_error();
    }, "access the last element ");

#endif

    return cl;
}



//
// std::map, std::unordered_map
//

NAMESPACE_BEGIN(detail)

/* Fallback functions */
template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void map_assignment(const Args &...) { }

// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_>
void map_assignment(enable_if_t<std::is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
    using KeyType = typename Map::key_type;
    using MappedType = typename Map::mapped_type;

    cl.def("__setitem__",
           [](Map &m, const KeyType &k, const MappedType &v) {
               auto it = m.find(k);
               if (it != m.end()) it->second = v;
               else m.emplace(k, v);
           }
    );
}

// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
template<typename Map, typename Class_>
void map_assignment(enable_if_t<
        !std::is_copy_assignable<typename Map::mapped_type>::value &&
        is_copy_constructible<typename Map::mapped_type>::value,
        Class_> &cl) {
    using KeyType = typename Map::key_type;
    using MappedType = typename Map::mapped_type;

    cl.def("__setitem__",
           [](Map &m, const KeyType &k, const MappedType &v) {
               // We can't use m[k] = v; because value type might not be default constructable
               auto r = m.emplace(k, v);
               if (!r.second) {
                   // value type is not copy assignable so the only way to insert it is to erase it first...
                   m.erase(r.first);
                   m.emplace(k, v);
               }
           }
    );
}


template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) {

    cl.def("__repr__",
           [name](Map &m) {
            std::ostringstream s;
            s << name << '{';
            bool f = false;
            for (auto const &kv : m) {
                if (f)
                    s << ", ";
                s << kv.first << ": " << kv.second;
                f = true;
            }
            s << '}';
            return s.str();
        },
        "Return the canonical string representation of this map."
    );
}


NAMESPACE_END(detail)

template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
class_<Map, holder_type> bind_map(handle scope, const std::string &name, Args&&... args) {
    using KeyType = typename Map::key_type;
    using MappedType = typename Map::mapped_type;
    using Class_ = class_<Map, holder_type>;

    // If either type is a non-module-local bound type then make the map binding non-local as well;
    // otherwise (e.g. both types are either module-local or converting) the map will be
    // module-local.
    auto tinfo = detail::get_type_info(typeid(MappedType));
    bool local = !tinfo || tinfo->module_local;
    if (local) {
        tinfo = detail::get_type_info(typeid(KeyType));
        local = !tinfo || tinfo->module_local;
    }

    Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);

    cl.def(init<>());

    // Register stream insertion operator (if possible)
    detail::map_if_insertion_operator<Map, Class_>(cl, name);

    cl.def("__bool__",
        [](const Map &m) -> bool { return !m.empty(); },
        "Check whether the map is nonempty"
    );

    cl.def("__iter__",
           [](Map &m) { return make_key_iterator(m.begin(), m.end()); },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );

    cl.def("items",
           [](Map &m) { return make_iterator(m.begin(), m.end()); },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );

    cl.def("__getitem__",
        [](Map &m, const KeyType &k) -> MappedType & {
            auto it = m.find(k);
            if (it == m.end())
              throw key_error();
           return it->second;
        },
        return_value_policy::reference_internal // ref + keepalive
    );

    // Assignment provided only if the type is copyable
    detail::map_assignment<Map, Class_>(cl);

    cl.def("__delitem__",
           [](Map &m, const KeyType &k) {
               auto it = m.find(k);
               if (it == m.end())
                   throw key_error();
               m.erase(it);
           }
    );

    cl.def("__len__", &Map::size);

    return cl;
}

NAMESPACE_END(PYBIND11_NAMESPACE)