// Copyright (C) 2003 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_VECTOR_ABSTRACT_ #ifdef DLIB_VECTOR_ABSTRACT_ #include "../serialize.h" #include <functional> #include <iostream> #include "../matrix/matrix_abstract.h" namespace dlib { template < typename T, long NR = 3 > class vector : public matrix<T,NR,1> { /*! REQUIREMENTS ON T T should be some object that provides an interface that is compatible with double, float, int, long and the like. REQUIREMENTS ON NR NR == 3 || NR == 2 INITIAL VALUE x() == 0 y() == 0 z() == 0 WHAT THIS OBJECT REPRESENTS This object represents a three dimensional vector. If NR == 2 then this object is limited to representing points on the XY plane where Z is set to 0. Also note that this object performs the appropriate integer and floating point conversions and promotions when vectors of mixed type are used together. For example: vector<int,3> vi; vector<double,2> vd; vd + vi == a vector<double,3> object type since that is what is needed to contain the result of vi+vd without any loss of information. !*/ public: typedef T type; vector ( ); /*! ensures - #*this has been properly initialized !*/ vector ( const T _x, const T _y, const T _z ); /*! requires - NR == 3 ensures - #x() == _x - #y() == _y - #z() == _z !*/ vector ( const T _x, const T _y ); /*! requires - NR == 2 ensures - #x() == _x - #y() == _y - #z() == 0 !*/ template <typename U, long NRv> vector ( const vector<U,NRv>& v ); /*! ensures - Initializes *this with the contents of v and does any rounding if necessary and also takes care of converting between 2 and 3 dimensional vectors. - if (U is a real valued type like float or double and T is an integral type like long) then - if (NR == 3) then - #x() == floor(v.x() + 0.5) - #y() == floor(v.y() + 0.5) - #z() == floor(v.z() + 0.5) - else // NR == 2 - #x() == floor(v.x() + 0.5) - #y() == floor(v.y() + 0.5) - #z() == 0 - else - if (NR == 3) then - #x() == v.x() - #y() == v.y() - #z() == v.z() - else // NR == 2 - #x() == v.x() - #y() == v.y() - #z() == 0 !*/ template <typename EXP> vector ( const matrix_exp<EXP>& m ); /*! requires - m.size() == NR - m.nr() == 1 || m.nc() == 1 (i.e. m must be a row or column matrix) ensures - Initializes *this with the contents of m and does any rounding if necessary and also takes care of converting between 2 and 3 dimensional vectors. - if (m contains real valued values like float or double and T is an integral type like long) then - #x() == floor(m(0) + 0.5) - #y() == floor(m(1) + 0.5) - if (NR == 3) then - #z() == floor(m(2) + 0.5) - else - #z() == 0 - else - #x() == m(0) - #y() == m(1) - if (NR == 3) then - #z() == m(2) - else - #z() == 0 !*/ ~vector ( ); /*! ensures - all resources associated with *this have been released !*/ double length( ) const; /*! ensures - returns the length of the vector !*/ double length_squared( ) const; /*! ensures - returns length()*length() !*/ T& x ( ); /*! ensures - returns a reference to the x component of the vector !*/ T& y ( ); /*! ensures - returns a reference to the y component of the vector !*/ T& z ( ); /*! requires - NR == 3 (this function actually doesn't exist when NR != 3) ensures - returns a reference to the z component of the vector !*/ const T& x ( ) const; /*! ensures - returns a const reference to the x component of the vector !*/ const T& y ( ) const; /*! ensures - returns a const reference to the y component of the vector !*/ const T& z ( ) const; /*! ensures - if (NR == 3) then - returns a const reference to the z component of the vector - else - return 0 (there isn't really a z in this case so we just return 0) !*/ T dot ( const vector& rhs ) const; /*! ensures - returns the result of the dot product between *this and rhs !*/ vector<T,3> cross ( const vector& rhs ) const; /*! ensures - returns the result of the cross product between *this and rhs !*/ vector<double,NR> normalize ( ) const; /*! ensures - returns a vector with length() == 1 and in the same direction as *this !*/ vector operator+ ( const vector& rhs ) const; /*! ensures - returns the result of adding *this to rhs !*/ vector operator- ( const vector& rhs ) const; /*! ensures - returns the result of subtracting rhs from *this !*/ vector operator- ( ) const; /*! ensures - returns -1*(*this) !*/ vector operator/ ( const T rhs ) const; /*! ensures - returns the result of dividing *this by rhs !*/ vector& operator= ( const vector& rhs ); /*! ensures - #x() == rhs.x() - #y() == rhs.y() - #z() == rhs.z() - returns #*this !*/ vector& operator += ( const vector& rhs ); /*! ensures - #*this == *this + rhs - returns #*this !*/ vector& operator -= ( const vector& rhs ); /*! ensures - #*this == *this - rhs - returns #*this !*/ vector& operator *= ( const T rhs ); /*! ensures - #*this == *this * rhs - returns #*this !*/ vector& operator /= ( const T rhs ); /*! ensures - #*this == *this / rhs - returns #*this !*/ template <typename U, long NR2> bool operator== ( const vector<U,NR2>& rhs ) const; /*! ensures - if (x() == rhs.x() && y() == rhs.y() && z() == rhs.z()) then - returns true - else - returns false !*/ template <typename U, long NR2> bool operator!= ( const vector<U,NR2>& rhs ) const; /*! ensures - returns !((*this) == rhs) !*/ void swap ( vector& item ); /*! ensures - swaps *this and item !*/ }; // ---------------------------------------------------------------------------------------- template<typename T, typename U, long NR> vector operator* ( const vector<T,NR> & lhs, const U rhs ); /*! ensures - returns the result of multiplying the scalar rhs by lhs !*/ template<typename T, typename U, long NR> vector operator* ( const U lhs, const vector<T,NR> & rhs ); /*! ensures - returns the result of multiplying the scalar lhs by rhs !*/ template<typename T, long NR> inline void swap ( vector<T,NR> & a, vector<T,NR> & b ) { a.swap(b); } /*! provides a global swap function !*/ template<typename T, long NR> void serialize ( const vector<T,NR>& item, std::ostream& out ); /*! provides serialization support !*/ template<typename T, long NR> void deserialize ( vector<T,NR>& item, std::istream& in ); /*! provides deserialization support !*/ template<typename T> std::ostream& operator<< ( std::ostream& out, const vector<T,3>& item ); /*! ensures - writes item to out in the form "(x, y, z)" !*/ template<typename T> std::istream& operator>>( std::istream& in, vector<T,3>& item ); /*! ensures - reads a vector from the input stream in and stores it in #item. The data in the input stream should be of the form (x, y, z) !*/ template<typename T> std::ostream& operator<< ( std::ostream& out, const vector<T,2>& item ); /*! ensures - writes item to out in the form "(x, y)" !*/ template<typename T> std::istream& operator>>( std::istream& in, vector<T,2>& item ); /*! ensures - reads a vector from the input stream in and stores it in #item. The data in the input stream should be of the form (x, y) !*/ // ---------------------------------------------------------------------------------------- /*!A point This is just a typedef of the vector object. !*/ typedef vector<long,2> point; /*!A dpoint This is just a typedef of the vector object. !*/ typedef vector<double,2> dpoint; // ---------------------------------------------------------------------------------------- bool is_convex_quadrilateral ( const std::array<dpoint,4>& pts ); /*! ensures - If you walk the points in pts in order pts[0], pts[1], pts[2], pts[3], pts[0] does it draw a convex quadrilateral? This routine returns true if yes and false if not. !*/ // ---------------------------------------------------------------------------------------- template <typename T> std::vector<T> find_convex_hull( std::vector<T>& points ); /*! requires - T == dlib::point or dlib::dpoint ensures - If points.size() < 3: it returns an empty vector. - Else: Finds the convex hull of points using the Graham scan algorithm. That is, the smallest convex shape that contains all points. Moreover, in case all points are collinear, that is, along the same line, it will also return an empty vector. !*/ // ---------------------------------------------------------------------------------------- template < typename array_of_dpoints > double polygon_area ( const array_of_dpoints& pts ); /*! requires - array_of_dpoints is something with an interface compatible with std::vector<dpoint> or std::array<dpoint,N>. ensures - If you walk the points pts in order to make a closed polygon, what is its area? This function returns that area. It uses the shoelace formula to compute the result and so works for general non-self-intersecting polygons. !*/ // ---------------------------------------------------------------------------------------- } namespace std { /*! Define std::less<vector<T,3> > so that you can use vectors in the associative containers. !*/ template<typename T> struct less<dlib::vector<T,3> > : public binary_function<dlib::vector<T,3> ,dlib::vector<T,3> ,bool> { inline bool operator() (const dlib::vector<T,3> & a, const dlib::vector<T,3> & b) const { if (a.x() < b.x()) return true; else if (a.x() > b.x()) return false; else if (a.y() < b.y()) return true; else if (a.y() > b.y()) return false; else if (a.z() < b.z()) return true; else if (a.z() > b.z()) return false; else return false; } }; /*! Define std::less<vector<T,2> > so that you can use vector<T,2>s in the associative containers. !*/ template<typename T> struct less<dlib::vector<T,2> > : public binary_function<dlib::vector<T,2> ,dlib::vector<T,2> ,bool> { inline bool operator() (const dlib::vector<T,2> & a, const dlib::vector<T,2> & b) const { if (a.x() < b.x()) return true; else if (a.x() > b.x()) return false; else if (a.y() < b.y()) return true; else if (a.y() > b.y()) return false; else return false; } }; } #endif // DLIB_VECTOR_ABSTRACT_